Cách chứng minh 2 tam giác đồng dạng

0
104117
cach-chung-minh-tam-giac-dong-dang-ava

Tam giác đồng dạng luôn là dạng bài xuất hiện trong đề thi học kì môn Toán lớp 9 cũng như trong quá trình ôn thi vào 10 môn Toán tất cả các năm gần đây. Tuy nhiên, đây cũng là dạng bài khiến rất nhiều em học sinh gặp khó khăn trong quá trình làm. Chính vì vậy, HOCMAI sẽ chia sẻ một số cách chứng minh 2 tam giác đồng dạng để các em học sinh có thể nắm được và có thể dễ dàng vượt qua dạng bài này. Hãy cùng HOCMAI tìm hiểu.

 

Tham khảo thêm:

Cách chứng minh tứ giác nội tiếp

Các xác định tâm đường tròn ngoại tiếp 

A. Các trường hợp tam giác đồng dạng

Trường hợp đồng dạng số 1 : 2 tam giác có 3 cạnh tương ứng tỉ lệ với nhau (cạnh – cạnh – cạnh)

xét 2 tam giác ∆ABC và ∆DEF, ta có các tỉ số:

AB/DE = BC/EF = AC/DF

=> Ta có thể kết luận: ∆ABC ~ ∆DEF (c – c – c)

Trường hợp đồng dạng số 2 : 2 tam giác có 2 cạnh tương ứng tỉ lệ với nhau – góc xen giữa hai cạnh bằng nhau (cạnh – góc – cạnh)

xét ∆ABC và ∆DEF, ta có các tỉ số:

AB/DE = AC/DF

Góc BAC = góc EDF

=> Ta có thể kết luận: ∆ABC ~ ∆DEF (c – g – c)

Trường hợp đồng dạng số 3 : 2 tam giác có hai góc tương ứng bằng nhau (góc – góc)

xét ∆ABC và ∆DEF, ta có :

Góc ABC = Góc DEF

Góc BAC = Góc EDF

=> ∆ABC ~ ∆DEF (g – g)

 

B. Các định lí đồng dạng của hai tam giác vuông 

Định lí của 2 tam giác vuông số 1 : (cạnh huyền – cạnh góc vuông)

Nếu 2 tam giác vuông thỏa mãn điều kiện: cạnh huyền và cạnh góc vuông của tam giác này có cùng tỉ lệ với cạnh huyền và cạnh góc vuông của tam giác kia thì hai tam giác vuông này đồng dạng với nhau.

Định lí của 2 tam giác vuông số 2: (hai cạnh góc vuông)

Nếu hai cạnh góc vuông của tam giác này lần lượt có cùng tỉ lệ với hai cạnh góc vuông của tam giác kia thì hai tam giác vuông đó đồng dạng với nhau.

Định lí của 3 tam giác vuông số 3: (góc)

Nếu một trong 2 góc nhọn của tam giác này bằng một trong 2 góc nhọn của tam giác kia thì 2 tam giác vuông đó đồng dạng với nhau.

 

C. Một số dạng bài và phương pháp chứng minh tam giác đồng dạng

Dạng 1: Phương pháp chứng minh 2 tam giác đồng dạng – Sử dụng hệ thức:

Bài tập số 1: Cho ∆ABC (điều kiện độ dài cạnh AB < AC), có đoạn thẳng AD là đường phân giác trong. Tại miền ngoài ∆ABC ta góc BCx = góc BAD vẽ tia Cx sao cho . Gọi điểm I là giao điểm của đường thẳng Cx và đường thẳng đi qua 2 điểm A, D. Chứng minh rằng:

a) Chứng minh 2 tam giác: ∆ADB đồng dạng ∆CDI.

b) Chứng minh rằng: AD/AC = AB/AI

c) Chứng minh rằng AD² = AB.AC – BD.DC

cach-chung-minh-tam-giac-dong-dang

Hướng dẫn giải

a) Xét 2 tam giác ∆ADB và ∆CDI ,

ta có:

Góc BCx = góc BAD (theo giả thuyết)

Góc D1 = Góc D2 (đối đỉnh)

=> ∆ADB ~ ∆CDI

b) Xét 2 tam giác ∆ABD và ∆AIC ,

ta có:

Góc B = Góc I (do ∆ADB đồng dạng với tam giác ∆CDI)

Góc A1 = góc A2 (AD là phân giác)

=> Ta có: ∆ABD ~ ∆AIC => Vậy tỉ số AD/AC = AB/AI

c) Từ kết quả của câu b ta có: AD.AI = AB.AC (1)

Ta có: ∆ADB ~ ∆CDI => ta có AD.DI = BD.CD (2)

Từ hệ quả (1) và (2) : AB.AC – BD.CD = AD.AI – AD.DI = AD(AI – DI ) = AD.AD = AD²

Vậy AD² = AB.AC – BD.CD

 

Bài 2: Cho tam giác ABC có góc A bằng 90 độ, có đường cao AH. Hãy chứng minh các hệ thức sau:

a. Chứng minh rằng AB2 = BH.BC và AC2 = CH.BC

b. Chứng minh rằng AB2 +AC2 = BC2

c. Chứng minh rằng AH2 = BH.CH

d. Chứng minh rằng AH.BC = AB.AC

cach-chung-minh-tam-giac-dong-dang-3

Hướng dẫn giải

a.Xét hai tam giác ∆ABC và ∆ HAC, ta có:

Góc BAC = góc AHC = 90 độ

Góc C là góc chung

=> Vậy tam giác ∆ABC ~ ∆HAC (theo định lý g – g trong tam giác vuông)

Vậy AC/HC = BC/AC

=> AC2 = CH.BC (1)

Chứng minh theo phương pháp tương tự ta có : AB2 = BH.BC (2)

b. Từ (1) và (2) ta vừa chứng minh ở trên ta có, ta có :

AB2 +AC2 = BH.BC + CH.BC = (BH + CH)BC = BC2

c. Xét hai 2 tam giác ∆HBA và ∆HAC, ta có :

Góc BHC = góc AHC = 90 độ

Góc ABH = góc HAC cùng phụ góc BAH

=> Vậy ta có thể kết luận ∆HBA ~ ∆HAC (theo tính chất g – g trong tam giác vuông)

=> HA/HC = HB/HA

Vậy suy ra: AH2 = BH.CH

d. Ta có do ∆ABC ~ ∆HAC

=> HA/AB = AC/BC

Vậy suy ra: HA.BC = AB.AC

 

Dạng 2 : Cách chứng minh hai tam giác đồng dạng – Định lí Talet + hai đường thẳng song song

Bài toán: Cho ∆ABC là tam giác nhọn. Vẽ 2 đường cao được vẽ từ các đỉnh B và C lần lượt là BD và CE. Lần lượt vẽ các đường cao DF và EG của ∆ADE. Yêu cầu:

a) Hãy chứng minh rằng ∆ABD ~ ∆AEG.

b) Hãy chứng minh rằng AD.AE = AB.AG = AC.AF

c) Hãy chứng minh rằng FG // BC

cach-chung-minh-tam-giac-dong-dang-2

 

Hướng dẫn giải

a) Xét ∆ABD và ∆AEG,

ta có :

BD AC (BD là đường cao)

EG AC (EG là đường cao)

=> BD // EG

=> ∆ABD ~ ∆AGE

b) Ta có AB/AE = AD/AG

=> AD.AE = AB.AG (1)

Chứng minh tương tự, ta được : AD.AE = AC.AF (2)

Từ dữ kiện (1) và (2) ta suy ra : AD.AE = AB.AG = AC.AF

c) Xét ∆ABC, ta có :

AB.AG = AC.AF (chứng minh theo câu b) => FG // BC (theo định lí đảo talet)

Dạng 3 : Phương pháp chứng minh hai tam giác đồng dạng – góc tương ứng bằng nhau

Bài toán: Cho ∆ABC có các đường cao BD và CE cắt nhau tại H. Yêu cầu:

a) Chứng minh rằng ∆HBE đồng dạng ∆HCE.

b) Chứng minh rằng ∆HED đồng dạng ∆HBC và góc HDE = góc HAE

c) Biết rằng BD = CD. Gọi điểm M là giao điểm của AH và BC. Chứng minh rằng: DE vuông góc EM.

cach-chung-minh-tam-giac-dong-dang-4

Hướng dẫn giải

a) Xét 2 ∆HBE và ∆HCD ta có :

Góc BEH = góc CDG = 90 độ (Theo giả thuyết)

Góc H1 = góc H2 (đối đỉnh)

Suy ra ta có ∆HBE ~ ∆HCD (theo tính chất g – g)

b) ∆HED và ∆HBC, ta có :

HE/HD = HB/HC (do ∆HBE ~ ∆HCD)

=> HE/HB = HD/HC

Mà ta có góc EHD = góc CHB (đối đỉnh)

=> Tam giác ∆HED ~ ∆HBC (do tính chất c – g – c)

=> Góc D1 = góc C1 (1)

mà : Đường cao BD và CE cắt nhau tại H (theo giả thuyết)

=> Điểm H là điểm trực tâm. => AH vuông góc BC tại M.

=> góc A1 + góc ABC = 90 độ

mặt khác ta có:

góc C1 + góc ABC = 90 độ (2)

=> Từ dữ kiện (1) và (2) ta có: góc A1 = D1

hay: góc HDE = góc HAE

c) Chứng minh tương tự câu b, ta có: góc A2 = E2 (3)

xét ∆BCD, ta có : DB = DC (theo giả thuyết)

=> ∆BCD là tam giác cân tại D => góc B1 = góc ACB

mà: góc B1 = góc E1 (do ∆HED ~ ∆HBC)

=> Góc E1 = góc ACB

mà: góc A2 + góc ACB = 90 độ

Góc A2 = góc E2 (chứng minh trên)

=> Góc E1 + góc E2 = 90 độ

hay góc DEM = 90 độ

=> ED vuông góc với EM.

Trên đây là các cách chứng minh tam giác đồng dạng mà các em học sinh cần phải nắm được. Hy vọng với bài viết trên sẽ giúp các em học sinh có thêm kiến thức cần thiết cũng như đạt kết quả cao trong kì thi sắp tới.